Characteristics of Concrete Linked to Ballistic Resistance Design of Testing Materials

By
Ariel Irizarry Perez
Graduate Student
Civil Engineering Department

US Army Corps of Engineers ® Engineer Research and Development Center

2009 UPRM-ERDC Summer Research Internship Program

September 12, 2009

XX Summer Research Symposium, UMET-SUAGM Caribe Hilton Hotel, San Juan, Puerto Rico

Research Mentors

Dr. Todd Rushing
Geotechnical and Structures Lab, Engineer Research and Development Center, US Army Corp of
Engineers

Academic Mentor

Ismael Pagán Trinidad, Professor and PI Department of Civil Engineering and Surveying, University of Puerto Rico at Mayagüez

Agenda

- INTRODUCTION
- OBJECTIVES
- METHODOLOGIES
- RESULTS
- CONCLUSIONS
- REFERENCES
- ACKNOWLEDGEMENTS

Introduction

Main Project Mission:

Attempt to isolate the effects of cementitious matrix strength and fiber reinforcement on the ballistic resistance of concrete, using ERDC's Cor-Tuf UHPC as a basis.

Cor-Tuf

Ductal

Normal Concrete

HSC

UHPC

Introduction

Ultra High Performance Concrete (UHPC):

- Compressive strength greater than 150 MPa (21.7 ksi)
- Internal fiber reinforcement
- High binder content with special aggregates
- Very low water/cement ratio and high-range water-reducing admixtures

Introduction

Corps of Engineers' Cor-Tuf UHPC:

- No coarse aggregate
- Dense Particle packing

- Superplasticizer
- Low w/c ratio (0.22)
- Ambient cure up to 20,000 psi
- Heat cure up to 30,000 psi

Cement	Sand	Silica Flour	Silica Fume	Superplasticizer	Water	Fibers
31.6	30.6	8.8	12.3	0.4	6.6	9.8

Scanning Electron Micrograph of Cor-Tuf

Objectives

- Create a set of cementitious materials having nearly the same mineralogy and paste morphology as the UHPC CorTuf, while ranging in unconfined compressive strength from 5 to 30 ksi.
- Develop a curing process for Cor-Tuf UHPC and the new materials that will decrease the curing time, while acquiring the same material properties.
- Fabricate thin panels with different strengths and with fibers in order to test their ballistic performance.

Methodologies

Experiment Setup:

- Variables:
 - Compressive Strenght

√ 5 ksi √ 17.5 ksi √ 30 ksi

Reinforcement

✓ NF

Dramix ZP305

✓ F2 Baumbach Methodologies

- Mixes were done varying:
 - √ w/c ratio
 - ✓ binder and aggegate content
 - √ curing process
- Specimens were collected and tested at:

 - ✓ 3 days ✓ 28 days

 - √ 7 days
 √ heat time
- Cor-Tuf mixes were tested at:

	Cementitious Material (%)	Cement Content (%)	Aggregate (%)
High	53	38	47
Medium	47	36	53
Low	40	33	60

New Cor-Tuf Curing Process:

Panels:

- √5ksi:
 - High Cement
 - 0.8 w/c ratio
 - 7-2 curing

- √17.5ksi:
 - High Cement
 - 0.38 w/c ratio
 - **3-6** curing

- High Cement
- 0.22 w/c ratio
- 7-2 curing

Conclusions

- When the w/c ratio decreases, the compressive strength increases.
- For normal curing the medium cement gives the highest compressive strength.
- For heat curing Cor-Tuf is by far the highest compressive strength.
- Curing can be accelerated by heating the specimens. Also a much higher strength can be achieved.

References

- ASTM Standard C109, 2008, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA.
- ASTM Standard C305, 2006, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, ASTM International, West Conshohocken, PA.

Acknowledgements

- USACE-ERDC
 - Todd Rushing
 - Tony Cummins
- UPR-Mayagüez
 - Ismael Pagán

Questions?

U.S. Army Engineer R&D Center Geotechnical and Structures Laboratory

Concrete and Materials Branch